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The finite-length effect of a resonant nonlinear photonic crystal on the propagation dynamics of gap solitons
is theoretically studied. This effect results in a dissipation and deceleration of the moving gap solitons such that
the propagation dynamics is essentially different from that on an infinite domain. Due to this effect, two slow
counterpropagating solitons can collide into a nonmoving breatherlike bound state, even under many realistic
excitation circumstances.
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I. INTRODUCTION

The dynamics of light propagation in nonlinear photonic
crystals �PC� has been of great research interest over the past
decade �1�. The refractive index of a PC is periodically
modulated, which creates a linear forbidden spectral band
known as photonic band gap �PBG� �1�. Further embedding
thin layers of nonlinear medium periodically �2–4� in a linear
PC results in a nonlinear one, which, however, permits an
intense pulse to propagate through the linear PBG in the
form of spatially localized bright region called the gap soli-
ton �GS� �5–8�. A GS originates from the intricate balance
between linear dispersion, Bragg reflection, and self-
focusing nonlinearity and consists of, unlike solitons in a
nonlinear uniform medium, two components of the forward-
and backward-propagating waves traveling at the same group
velocity �2,3�. Many experimental observations of GSs have
been reported in different types of nonlinear PC structures
�9–12�. Further, the research interest evolves toward devel-
oping various ways to trap the GSs for obtaining stopped
light. Several theoretical works �13–15� predicted that this
goal can be achieved by using a coherent or incoherent pump
to create a steady-state local defect within the PC structures
for trapping the moving GSs.

However, to our best knowledge, in current theoretical
works the structural length of a nonlinear PC is just assumed
to be infinite so that the corresponding mathematic model
can be simplified to an integrable system and be resolved
analytically �8,16,17�. Although this assumption often makes
no obvious influence to the results when the medium is long
enough and the incident light is intense, it is in principle
untrue since a practical structure always has the limited
length. Qualitatively, due to the finite length itself as well as
the induced boundary conditions, either the linear PBG or
nonlinear GS actually becomes different from its counterpart
obtained on an infinite domain. Specifically, the former is no
longer 100% linearly reflective; the latter is truncated at the
two boundaries and hence the inner balance of it is de-
stroyed. In this paper, we investigate this effect on the propa-
gation dynamics of GSs and find it substantially changes the
behaviors of those GSs with their initial velocity slow
enough. Based on this finding, a feasible way to trap slow
GSs in a stable bound state is demonstrated under many
realistic excitation conditions.

II. THEORETICAL MODEL AND ANALYSIS

The model we study here is a resonantly absorbing Bragg-
periodic reflector �RABR� �2,3,18�, which is formed by
Bragg-periodically embedding thin layers of resonantly ab-
sorbing two-level systems �atoms, ions, or excitons� into a
one-dimensional nonabsorbing linear uniform medium and
hence has the resonant nonlinearity. In contrast to the cubic
nonlinear GSs excited in Kerr nonlinear PCs �9,14,19–21�
�where very intense light pulses of 10 GW/cm2 or greater
were required�, the resonant GSs in a RABR have been pre-
dicted to form by a principally different mechanism at much
lower input intensities �10 MW/cm2 or less� �3,15,22,23�,
which is significant for practical applications. This model
closely corresponds to a real structure of Bragg-periodically
arranged quantum wells with resonant excitons in a semicon-
ductor, which has been successfully fabricated and whose
linear and nonlinear properties have been studied experimen-
tally �4,18�. The theory used here for this model is based on
the coupled-mode two-wave Maxwell-Bloch �TWMB� equa-
tions in the slowly varying envelope approximation of the
forward and backward propagating electric fields E±�x , t�,
which can be expressed in terms of the real valued functions
as �2,13,15�

�t
±�x,t� ± �x

±�x,t� = P�x,t� , �1a�

Pt�x,t� = n�x,t���+�x,t� + �−�x,t�� , �1b�

nt�x,t� = − Re�P*�x,t���+�x,t� + �−�x,t��� , �1c�

where �±�x , t�= �2�c� /��E±�x , t�; E±�x , t� are the smooth
field-amplitude envelopes of the forward and backward
Bloch waves; �c= �8��T1 /3c��2�1/2 is the cooperative time,
characterizing the mean photon lifetime in the medium pre-
ceding resonant absorption; � is the dielectric constant of the
medium; T1 is the longitudinal relaxation time of the Bloch
vector; � is the density of two-level systems; � is the wave-
length of the propagating light field �note in this model, the
light pulse is just assumed as a quasimonochromatic scalar
field, and its frequency is exactly resonant to the two-level
systems�; � is the matrix element of the dipole transition
moment; P�x , t� and n�x , t� are the polarization and density
of inverse population, respectively; c is the speed of light in
vacuum; t= t� /�c and x=x� /c�c are, respectively, the dimen-
sionless time and space variables, where t� and x� represent
the real physical time and spatial coordinates along the nor-*zhongshuq@tom.com
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mal to the resonance planes in the structure, respectively;
and the subscripts x and t imply partial derivatives. Consid-
ering the extremely compact notation of the model, without
losing generality a theoretical treatment can be just in scaled
units of the cooperative time �c, i.e., �c=1. Experimentally,
its value can be readily set for specific applications by se-
lecting the suitable material parameters such as density and
oscillator strength since they are contained in �c. For in-
stance, �c�0.6 ps in a RABR consisting of GaAs quantum
wells with two-dimensional excitons when the exciton den-
sity �=2	1019 m−3 and the wavelength �=806 nm.

Further, substituting solutions of the Bloch equation P
=−sin 
 and n=−cos 
 into Eq. �1� gives rise to the exact 1D
sine-Gordon equation �SGE� �2�


xx − 
tt = sin 
 . �2�

The quantity 
 denotes the Bloch phase angle and is closely
related to the propagating fields by the equation 
�x , t�
=�−�

t ��x , t��dt�, where �=�++�−. If the length of a RABR
is taken as infinite, i.e., the boundary constraint can be de-
scribed as 
→0 and d
 /dx→0 as x→ ±�, then the dynam-
ics equation of SGE �2� becomes a completely integrable
system and can be analytically resolved. The solutions in-
clude a complete set of localized traveling waves: solitons
�17�. The two simplest ones �one-soliton� of them are the
kink and antikink. Other higher-order ones are called N soli-
tons and can be obtained either by the Bäcklund transforma-
tion �8� or by the direct method �17�. However, for a practi-
cal RABR of finite length, the dynamics system includes not
only the universal equation �2� but also the practical bound-
ary conditions of free input or output of energies so that it
becomes nonconservative �hence nonintegrable� and, at least
in principle, can no longer be resolved analytically.

To clarify the difference between these two situations of
infinite and finite, we first qualitatively discuss the finite-
length effect in a way of energetic analysis combined with
physical intuition. Let us begin with the general localized
solutions to SGE �2� on an infinite domain, among which we
are interested in these four ones closely related to this work:

kink 
+, antikink 
−, kink-antikink two-soliton �K-K̄� 
KK̄,
and breather 
br. They can be explicitly expressed as �16,17�


±�x,t� = 4 tan−1	exp
±
x − ut − x0

�1 − u2 �
 , �3a�


KK̄�x,t� = 4 tan−1
 sinh�u�t − t0�/�1 − u2�

u cosh��x − x0�/�1 − u2�
� , �3b�


br�x,t� = 4 tan−1
 tan � sin��cos ���t − t0��
cosh��sin ���x − x0�� � . �3c�

The parameters u and x0 in 
±�x , t� denote, respectively, the
constant velocity and initial center of the one-soliton. This
velocity u can take any value between −1 and +1, i.e., −1

u
1. The parameter u in the second expression also has
the meaning of velocity but obviously cannot take 0, x0 here

denotes the initial position of the mass center of a K-K̄. The
parameter � in the third determines the breather shape and

size and has ���. Note that 
KK̄ can be readily obtained
from the two single solitons 
± by using the Bäcklund trans-
formation, but the breather 
br cannot from them. In addition,
the Hamiltonian for the perfect SGE of Eq. �2� on an infinite
line is

H � �
−�

+� 
1

2

t

2 +
1

2

x

2 + 1 − cos 
�dx . �4�

Substituting Eq. �3� into �4�, we obtain the total energy for

these four solitons E±=8/ �1−u2�1/2�8, EKK̄=16/ �1−u2�1/2

�16�16 sin �=Ebr. This means that, in a conservative sys-
tem a pair of kink and antikink always has more energy than
a breather and can never combine into it, which is exactly in
accordance with the result from the Bäcklund transforma-
tion. In addition, on an infinite domain a GS is exactly bal-
anced and always preserves its energy and velocity during
the propagation or collision with others. Thus, a pair of kink
and antikink can never give rise to a breather by collision
with each other, i.e., trapping of them in this way is impos-
sible on an infinite domain.

However, in a real physical model, this conclusion prob-
ably becomes invalid due to the finite-length effect. First, the
kink or antikink is actually truncated at the two boundaries
so that its energy becomes

E±
real =

16
�1 − u2�2 −

1

1 + exp
±2
x1 − ut − x0

�1 − u2 �
−

1

1 + exp
±2
x2 − ut − x0

�1 − u2 �� . �5�

Obviously, E±
real is the function of u, x1, and x2, and can

possibly be less than 8. Further, since such a truncated soli-
ton is no longer an exact equilibrium state, during its propa-
gation it necessarily tries to gradually modify its form toward
a perfect kink or antikink of the infinite domain. This modi-
fication can only be fulfilled by ceaselessly emitting the fast
linear waves out of the structure �remember that the PBG of
a finite structure is no more fully forbidden to linear light
field�, and hence also results in energy leakages of a GS. On
the other hand, the velocity of the GS is also gradually de-
celerated since it is proportional to the energy. Thus, a trun-
cated GS of the practical structures has the chance to arrive
at a state of u=0, which means the GS is trapped within the
structure. Nevertheless, such a singly trapped GS has proved
unstable and will eventually be nonlinearly reflected or trans-
mitted �13�. However, if we at the same time excite a similar
one from the opposite direction to make them collide with
each other, they may combine into a stable bound state,
which actually corresponds to a breather created by a pair of
truncated kink and antikink and, according to the analysis
above, obviously can also satisfy the energy requirement.

To check whether this is the truth, let us directly solve Eq.
�1� numerically under the set of initial and boundary condi-
tions
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�+�x = 0,t� = �+�t� , �6a�

�−�x = l,t� = �−�t� , �6b�

�±�x,t = 0� = 0, �6c�

P�x,t = 0� = 0, �6d�

n�x,t = 0� = − 1, �6e�

which corresponds to a quite realistic experimental configu-
ration. The character of the structure depends only on the
parameter of length l and different excitation conditions can
be obtained by varying the amplitude and shape of the input
field �±�t�.

III. NUMERICAL RESULTS AND DISCUSSIONS

We solve this nonintegrable system of Eqs. �1� and �6� by
the finite-difference time-domain method for various struc-
tural lengths l �finite� and find that, the anticipated breather-
like bound state always really can be achieved by setting a
suitable incident intensity according to the specific l. The
fact that the occurrence of the bound state is independent of
length is understandable because the finite-length effect,
which is responsible for the bound state, always exists if only
the structure is not infinite. Thus, to investigate the common
property of the propagation and collision dynamics in a finite
RABR structure, we only need to focus on the intensity and
profile of the incident pulses. Generally, our results show: for
any a given length, there always exists a threshold regime of
the incident intensity, within which two counterpropagating
GSs can coalesce into the breatherlike bound state, while
below or above which they are just linearly reflected out or
unaffectedly pass through each other just like what occurs on
an infinite domain. This means that the finite-length effect
makes apparent importance mainly to those GSs of moderate
energy or velocity, but is hardly perceptible under the cir-
cumstance of intense or weak excitation. That is why it has
not been realized in current theoretical works.

Without losing generality, all results below are for a typi-
cal length of l=40 �in units of c�c�, which corresponds to a
practical InGaAs multiquantum wells sample with the physi-
cal length of 7.2 mm and consisting of about 65 000 layers.
We first assume that it is excited by a pair of similar smooth
sech pulses from the two opposite boundaries. The reason
why the sech-like incident field is selected is that the area of
a left- or right-moving sech pulse exactly corresponds to a
kink or antikink solution of the SGE, respectively. Thus, the
amplitude of incident electric field can be expressed as

�0
+�t� = �l

−�t� = �0 sech��t − tp�/�0� , �7�

where �0, tp, and �0 are the excitation parameters of peak
value, time delay, and duration of the incident pulses, respec-
tively. Here we set tp=5 to ensure the pulses enter from far
away, and simply let the pulse duration �0�0.5 �in units of
�c�, corresponding to a practical femtosecond laser pulse.
Then, the pulse area 
, determining the incident intensity,

can be arbitrarily adjusted only by varying the peak value
�0.

Typical outcomes under sech-like excitations of different
intensities are illustrated in Figs. 1 and 2. When the incident
intensity is too high �Fig. 1�a� with �0=4.3�, there is no
obvious evidence of deceleration in the GSs. Further increas-
ing of the incident intensity brings no substantial difference,
indicating that the excitation of �0�4.3 belongs to a strong
nonlinear regime for the length of l=40 and is almost not
subject to the finite-length effect. In the other limit, when the
incident intensity is lowered to �0=3.58 �Fig. 1�b��, this
effect strongly emerges by causing so striking a deceleration
in the GSs that they have already stopped before collision.
Below this value of excitation, the dynamics system falls
into the linear regime, i.e., the incident light is just Bragg
reflected and no GS is excited. Thus, 3.58
�0
4.3 is ac-

FIG. 1. Contour plot for the spatiotemporal evolution of inver-
sion n�x , t� within a RABR excited by two counterinfused sech
pulses with equivalent peak value of �a� �0=4.30, �b� �0=3.58.
The black corresponds to n=1, i.e., population inversion, and the
white to n=−1, two-level systems in ground state.

FIG. 2. Evolution of n�x , t� under excitation by a sech pulse pair
of the peak value �0=3.59 but with the profile being �a� smooth,
�b� perturbed by white noises of ratio 15% to the original.
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tually the critical regime for the length of l=40 to display the
finite-length effect. Certainly, other lengths also have their
own critical regimes, whose value and broadness both grow
along with the increase of structural length. A typical result
of GS interaction within this regime is shown in Fig. 2�a�
with �0=3.59. The two decelerated GSs just coalesce into a
quiescent bound state, whose energy periodically oscillates
between localized atomic excitation and coherent light. The
stability of it is displayed in Fig. 2�b�, where a quite large
white noise �15% of the origin signal� is added up to the
incident field by multiplying the term of 1+0.3�rand�t�
−0.5� �“rand�t�” stands for the random function and it arbi-
trarily creates values from 0 to 1� to the originally smooth
envelope. The noises obviously do not qualitatively damage
the occurrence and existence of the bound state.

For comparison, the evolution of the other important
quantity �the light field� is also demonstrated in Fig. 3, where
the light intensity rather than the field amplitude is adopted
since the former is more meaningful for detecting. In addi-
tion, note that the intensity in Fig. 3 is plotted on the natural
logarithmic scale, i.e., the brightness is proportional to the
quantity of ln�1+�2�x , t��. This treatment is in order to dis-
tinguish those very small intensities, since the light intensity
is found to actually vary within a very wide range during its
propagation. The excitation conditions for Figs. 3�a� and 3�b�
correspond, respectively, to those of Figs. 1�a� and 2�a�. In
both cases, the light field and population inversion evolve
almost in the similar way. The total energy of a GS is actu-
ally divided into two parts—the population inversion and the

light field, both propagating together in the same velocity at
any time. Further, note that the inversion can be saturated
and hence has a maximum value, while the light field can
carry arbitrary energy. Thus, if the input energy �always first
satisfies the requirement of population inversion� is not large
enough, the light field may disappear �see the duration after
the linear radiations and before the coalescence in Fig. 3�b��.
The evolutions of light field for other conditions �not pro-
vided� are also exactly corresponds to those of inversion, so
the following results are shown only by the population inver-
sion.

According to our analysis, it is the linear radiations re-
leased from a GS that directly result in the deceleration and
coalescence. However, they can hardly be observed just from
the plots of n�x , t� or �2�x , t� since they are much weaker
than a GS. Thus, to clearly witness the existence of them the
best way is to monitor the energy fluxes in and out of the
structure from the two boundaries. Note that the dynamical
fluxes through both boundaries actually are exactly the same
since the excitation is completely symmetric. Hence, we
need provide only one of them. This is shown in Fig. 4,
demonstrating the field amplitude fluxes in �dashed� and out
�solid� of one endpoint under the excitation condition of Fig.
2�a�. The corresponding energy fluxes can be obtained by
squaring this field amplitude. Clearly, the outward flux con-
sists of two chains of linear waves, emerging shortly and
long after the input field enters into the structure, respec-
tively. In fact, for the left boundary they are, respectively,
backward linear radiations of the right-moving kink and for-
ward ones of the left-moving antikink, and vice versa for the
right boundary. Note again such separating of linear radia-
tions from a GS will never occur on an infinite domain, since
where a GS is exactly balanced and strictly self-preserving.

Further, to validate our numerical results we also provide
the analytic counterparts in Fig. 5 for comparison. They are
obtained by directly substituting the analytic solutions of
Eqs. �3b� and �3c�, respectively, into the expression n�x , t�
=−cos 
�x , t�, one solution of the Bloch equation. Comparing
Figs. 1�a� and 2�a�, respectively, with Figs. 5�a� and 5�b�, we

FIG. 3. Evolution of the field intensity under the same excitation
condition as that for �a� Fig. 1�a�, �b� Fig. 2�a�. The brightness is
proportional to ln�1+�2�x , t��.
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FIG. 4. Amplitude ��t� of the input �dashed line� and output
�solid line� optical field at the left end of the RABR structure under
the excitation condition of Fig. 2�a�.
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readily find the common properties in both cases, which con-
firms our former predictions especially that the final bound
state formed by two decelerated GSs is breatherlike.

Finally, we investigate how this effect works on the re-
sults for more critical and realistic conditions and find that
the finite-length-induced stable bound state can also occur
under at least three other kinds of excitations by: nonsym-
metric sech pulses �Fig. 6�a��, symmetric Gaussian pulses
�Fig. 6�b��, two successive pairs of sech pulses but with the
delay between them long enough �Fig. 7�a��. The two un-
equal sech pulses in Fig. 6�a� have �0=3.60 and 3.58, re-
spectively. The Gaussian pulses in Fig. 6�b� are defined as
�0

+�t�=�l
−�t�=4.9 exp�−�t− tp�2 /�0

2�. As for in Fig. 7, the in-
cident field can be approximately described by �0

+�t�
=�l

−�t�=3.59�sech��t− tp1� /�0�+sech��t− tp2� /�0���. The time
delay �tp= tp2− tp1 is set as 35 and 5 for Figs. 7�a� and 7�b�,

respectively. What occurs in Figs. 6�a�, 6�b�, and 7�a� is still
that the excited GSs are stably trapped, which is even beyond
our analytic prediction above and hence implies that the
bound state is actually an attracting eigenstate of low energy
for any unbalanced �keeping releasing linear waves� GSs of
energies a little above it to evolve into. However, if shorten-
ing the time delay as in Fig. 7�b�, the intense interaction
between two adjacent GSs will exceed the slow decelerating
effect of finite-length so that the former and latter GSs are
directly pushed and repelled out, respectively, before they
have time to evolve into that eigenstate. This property may
be useful for releasing the stored optical energy in a nonlin-
ear PC structure.

IV. CONCLUSION

In conclusion, the finite structural length can damage the
vigorous balance of a GS by truncating it at the boundaries.
For evolving into a new equilibrium, a truncated GS has to
keep releasing linear radiations so that the speed of it is
gradually decelerated. Such two counterpropagating GSs, if
excited by the moderate incident field such that their initial
speeds are low enough, can coalesce into a nonmoving
bound state, which is a breatherlike low-energy state and
attracts most unbalanced GSs of energy a little above it to
evolve into. These results prove not to occur on an infinite
domain and suggest the possible applications in optical en-
ergy storage and release, signal processing, quantum com-
puting, etc. Finally, this effect is reasonably promising to
generally exist in PC structures of other kinks of nonlinear-
ity.
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FIG. 5. Evolution of analytic n�x , t� derived from the two-

soliton solution of �a� K-K̄ described by Eq. �3b� with u=0.5 and
the scaled time t and space x to �1/u2−1�1/2 and �1−1/u2�1/2, re-
spectively. �b� Breather by Eq. �3c� with �=1.3 and t and x scaled to
cos � /� and sin �, respectively. Other parameters are set as x0= t0

=0 for both.

FIG. 6. Evolution of n�x , t� under excitation by �a� two unequal
sech pulses of �0=3.6 and 3.58, respectively, and �b� two equiva-
lent Gaussian pulses of �0=4.9.

FIG. 7. Evolutions of n�x , t� under excitation by four equal sech
pulses of �0=3.59. The time delay between the first and second
pair is �a� �tp= tp2− tp1=35, �b� �tp=5.
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